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Abstract: Treatment of the secondary and tertiary allylic carbonates 1 with the sodium salt of
dinwthyl malonate and a catalytic amount of Wilkinson's catalyst modified with a triorganophosphite,
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furnished ine tertiary and quaiernary carbon siereogenic centers 2 in high yield wiih excellent
regioselectivity. © 1998 Elsevier Science Ltd. All rights reserved.

The construction of quaternary carbon stereogenic centers continues to be a challenge for
classical synthetic methods. Despite extensive work in this area, a general solution to the problem has
not been forthcoming.' The allylic alkylation reaction is a powerful synthetic transformation that may

. 2-4 o
be catalyzed using a wide range of transition metal complexes.” The palladium cata}y"cd reaction has
been “'t‘ﬁsiveiy inv gawu, with ever-mcreasmg cmpndsls on asymmcmc CalalySlS However,

order to circumvent problems with regloselecnvuy. Recent work has demonstrated that the
regiochemical outcome is a function of the transition metal complex.* In this paper, we describe our
results on the rhodium catalyzed allylic alkylation of secondary and tertiary allylic carbonates 1 using a
modified Wilkinson's catalyst, [RhCI(PPh,),], to furnish the tertiary and quaternary allylic products 2
in high yield with excellent regioselectivity (Scheme 1).
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Our initial studies focused on the development of general reaction conditions for this
transformation. Treatment of the secondary carbonate 1Ia (R, = H, R, = Me) with the sodium enolate
of dimethylmalonate in the presence of a catalytic amount of Wilkinson's catalyst furnished the primary
and secondary substituted derivatives 2a/3a in excellent yield, as a 2.3:1 mixture of regioisomers. In
order to improve the regioselectivity the catalyst was modified in site with a series of
triorganophosphite additives. Triphenyl- and triisopropylphosphite gave a modest improvement in the
selectivity, while trimethylphosphite led to substantial improvement in the formation of 2a over 3a
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Treatment of the tertiary allylic carbonate 1g under analogous conditions furnished the allylic
alkylation products 2g/3g in modest yield and with poor regiocontrol. Hence, alternative reaction
conditions were explored. Preliminary work demonstrated that 10 mol% of Wilkinson’s catalyst
modified with less triorganophosphite were necessary for good catalytic turnover and selectivity.
Interestingly, triphenylphosphite rather than trimethylphosphite proved optimal for good
regioselectivity with the tertiary allylic carbonates. Indeed, this transformation represents the first

examnle of a rhodinum catalvzed allv ylic alkylation with tertiary allylic carbona
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quaternary carbon centers, and it is likely to have significant synthetic utility.

Table 1: Regioselective Rhodium Catalyzed Allylic Alkylation of Secondary and Tertiary Allylic
Carbonates 1 with the Sodium Salt of Dimethyl Malonate’

entry allylic carbonate 1* reaction ratio 2 : 3°% yield (%)°

R, R, conds.”
1 H Me a A 99:1 91
2 " "Pr b A 98:2 89
3 " Ph c A 98:2 95
4 " ‘Hex d A 93.7 84
5 Me Me e B 299:1 89
6 " Et f B 96:4 78
7 " "Pr g B 96:4 73
8 " ‘Hex h B NA trace
9 " Ph i B 299:1 32f

* Reactions were all carried out on a 1 mmol reaction scale. ® Method A: 5§ mol% [Rh(PPh,);Cl] with P(OMe), (20
mol%) then NaCH(COzMe)z (2 eq.) in THF at 30 °C. Method B: 10 mol% [Rh(PPh3)3Cl] with P(OPh); (15 mol%) then
NaCH(CO.Me), (3 eg \ in THF at 30 °C, ¢ Ratios determined h\l rnnl“nr\l GC, Thp nrimary nroduct was prenared

NaCH(CO,Me), (3 termined ary primary pro prepared
independently in each examplc via Pd(0) catalysis. °© Isolated ylelds i 5:3 Mixture of 3°:1° allylic carbonates 1i/1i’
furnished recovered allylic carbonate 1i/1i” (3°:1° = 1:2.7; 56%; sce ref. 8).
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to excellent regiocontrol. While the tertiary allylic carbonates l1e-i proved slightly less reactive, the
yields and selectivity’s were comparable. The cyclohexyl derivatives 1d and 1h were significantly
less reactive, in which the latter furnished only a trace of the alkylated products 2h/3h. Another
interesting observation is that the phenyl substituted allylic carbonate 1i undergoes allylic alkylation
along with competitive rearrangement to the primary allylic carbonate 1i’.* The reaction was also

applied to cyclic systems, as outlined in Scheme 2. Treatment of the tertiary allylic carbonate 4 under

yield as a 97:3 ratio favoring the more substituted product.®
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The origin of the increased turnover rate and excellent regioselectivity may be attributed, at least
in part, to the increased m-accepting ability of the triorganophosphite additives.'® The phosphite
presumably undergoes ligand exchange with the phosphine ligands on Wilkinson’s catalyst to produce
a new catalytically active species, the nature of which is currently being elucidated.

In conclusion, we have developed a series of allylic alkylation reactions that utilize a modified
Wilkinson’s catalyst to facilitate the formation of tertiary and quaternary carbon stereogenic centers.
The advantage of this method is that it modifies a commercially avai

procedure very practical.
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